An Improved Approach to Extract Document Summaries Based on Popularity
نویسندگان
چکیده
With the rapid growth of the Internet, most of the textual data in the form of newspapers, magazines and journals tend to be available on-line. Summarizing these texts can aid the users access the information content at a faster pace. However, doing this task manually is expensive and time-consuming. Automatic text summarization is a solution for dealing with this problem. For a given text, a text summarization algorithm selects a few salient sentences based on certain features. In the literature, weight-based, foci-based, and machine learning approaches have been proposed. In this paper, we propose a popularity-based approach for text summarization. A popularity of the sentence is determined based on the number of other sentences similar to it. Through popularity criteria, it is possible to extract potential sentences for summarization that could not be extracted by the existing approaches. The experiment results show that by applying both popularity and weight-based criteria it is possible to extract effective summaries.
منابع مشابه
EXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS
Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...
متن کاملMulti-Document Summarization via Discriminative Summary Reranking
Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and e...
متن کاملObtaining Single Document Summaries Using Latent Dirichlet Allocation
In this paper, we present a novel approach that makes use of topic models based on Latent Dirichlet allocation(LDA) for generating single document summaries. Our approach is distinguished from other LDA based approaches in that we identify the summary topics which best describe a given document and only extract sentences from those paragraphs within the document which are highly correlated give...
متن کاملA survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملروش جدید متنکاوی برای استخراج اطلاعات زمینه کاربر بهمنظور بهبود رتبهبندی نتایج موتور جستجو
Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005